Formation of Various Shapes of Galaxies

Based on the Energy Circulation Theory

Galactic seed separation completed \Rightarrow stellar seed release starts.
Inclined flat separation of a local intrinsic energy of a galactic seed
Types of stellar seed releases from a galactic seed:

1. Linear release

- Randomly and continuously stellar seeds are released.
- Flat release and orthogonal release

2. Ring release

- Simultaneous flat releases on the entire circumference

Stellar seeds in a ring ----- intra-circulation force works Continue to circulate as the radius expands by space expansion.

- A ring of stellar seeds is released intermittently.

Classification of galactic seeds to release stellar seeds:
Use the same one for gamma-ray bursts

Change of potential energy in a galactic seed separation released as radiation (gamma-ray burst, gravitational wave)

Galactic seeds after a galactic seed separation:

Type-1 GRB:

- Enough receding speed at the energy trough of orthogonal separation.
- Consists of only an orthogonal separation.
- Two seeds continue to recede.

Type-2 GRB:

- The distance vibrates around the trough and gets static.
- From the trough of orthogonal division, subsequent flat separation starts.
- If the speed at the trough of flat separation is high, the distance continues to increase or gets constant without a contraction.

Type-3 GRB:

- The receding speed is not enough in flat separation.
- The distance vibrates around the trough and releases radiations. Then, two seeds get static.
- Results in attached two galactic seeds.

Type-1: galaxy formed from a single galactic seed

(a)

Linear releases of stellar seeds

Flat and intermediate releases \rightarrow form an elliptical galaxy or halo Orthogonal releases \rightarrow form a bulge structure

Type 1-1: By independent linear releases
(a) Elliptical galaxy

Simulation using an exponential time unit:
For $T_{1.1}=m$, the space expands by 1.1^{m} times. Present: $m=0$

$$
r_{0}=1.1^{m} r_{m}, \quad r_{m}: \text { radius at } T_{1.1}=-m
$$

Ring releases: occur intermittently once per $T_{1.1}=1$
(Reported 42 shells of NGC 3923 show this interval.)

Type 1-2: By simultaneous flat releases in a ring (ring release)

(c) Galactic seed released rings then exhausted $\left(T_{1.1}=-26\right.$ to -22$)$.

Type-2: galaxy formed from rotating binary galactic seeds
 Type 2-1: By intermittent ring releases

Type 2-1: By intermittent ring releases from rotating binary galactic seeds

$$
T_{1.1}=-18 \text { to } 0: r_{m}=1.1^{m} \cdot R_{0}=3 * 1.1^{18}, \theta_{m}=0.236 \pi\left(1.1^{m}-1\right)
$$

$$
R_{m}=3 * 1.1^{18-m} \quad, \quad m=0 \text { to } 18
$$

Galactic seeds: $\quad\left[x_{m}, y_{m}\right]_{1}=\left[\sin t+R_{m} \cos \theta_{m}, \cos t+R_{m} \sin \theta_{m}\right]$

$$
\left[x_{m}, y_{m}\right]_{2}=\left[\sin t-R_{m} \cos \theta_{m}, \cos t-R_{m} \sin \theta_{m}\right]
$$

Released rings: $\quad\left[x_{m}, y_{m}\right]_{1}=\left[r_{m} \sin t+R_{0} \cos \theta_{m}, r_{m} \cos t+R_{0} \sin \theta_{m}\right]$
$\left[x_{m}, y_{m}\right]_{2}=\left[r_{m} \sin t-R_{0} \cos \theta_{m}, r_{m} \cos t-R_{0} \sin \theta_{m}\right]$

Formation of a bar-bulge

(c) Formation of a "bar-bulge" of stellar seeds

Circulations are formed not limited at the center, spreading on the line.

(d) Distribution of bar-bulges

Type 2-2: By linear releases from two outer-ends of rotating binary galactic seeds

NGC 1300
(b) Barred arm galaxy (with bar-bulge)
(a) Released stellar seeds from two ends move linearly.

$$
T_{1.1}=-16 \text { to } 0: V_{1.1}=1.2, R_{m}=3 * 1.1^{(16-m)}, \theta_{m}=0.613 \pi\left(1.1^{m}-1\right)
$$

Short duration of linear releases:

$$
\begin{array}{cc}
T_{1.1}=-16 \text { to }-12: & \text { Linear releases } \\
T_{1.1}=-11 \text { to } 0: & \text { Ring releases } \\
r_{m}=1.1^{m}, R_{0}=3 * 1.1^{16} \\
\theta_{m}=0.613 \pi\left(1.1^{m}-1\right)
\end{array}
$$

Type-3: galaxy formed from two attached galactic seeds

Type 3-1: By intermittent ring releases from two attached galactic seeds

Rings are released once per $T_{1.1}=1$ from $T_{1.1}=-24$ to 0 : Double-disc galaxy

(a) No rotation of galactic seeds $\Omega_{1.1}=0$
$\left[x_{m}, y_{m}\right]_{1}=\left[r_{m} \sin t+\cos \left(m \Omega_{1.1}\right), r_{m} \cos t+\sin \left(m \Omega_{1.1}\right)\right]$
$\left[x_{m}, y_{m}\right]_{2}=\left[r_{m} \sin t-\cos \left(m \Omega_{1.1}\right), r_{m} \cos t-\sin \left(m \Omega_{1.1}\right)\right]$
$r_{m}=1.1^{m}, \quad \Omega_{1.1}=0(a), \frac{\pi}{12}(b), \frac{\pi}{8}(c), \frac{\pi}{6}(d)$ or $\frac{\pi}{4}(e)$
$m=0$ to $24, \quad 0 \leq t \leq 2 \pi$

Double-disc galaxy showing spiral arms: Spiral double-disc galaxy

Bulges of non-rotating attached galactic seeds:

Respectively remain over/under the two galactic seeds.

Bulges of a spiral double-disc galaxy:

Overall appearance of the galaxy (double-disc + bulge)

(b) Spiral double-disc galaxy ($T_{1.1}=-24$ to $\left.0, \Omega_{1.1}=\pi / 8\right)$

Type 3-2: By ring releases from rotating two galactic seeds firstly attached then receding by the space expansion

(a) Disc by ring releases

(b) Bulge by orthogonal releases
(1) $T_{1.1}=-24$ to $-13: r=1, R=1, r_{\text {bulge }}=0.3, \Omega_{1.1}=\pi / 6$
(2) $T_{1.1}=-12$ to $0: \quad r=0.5, R_{m}=1.1^{m}, R_{0}=1.1^{12}=3.14, r_{\text {bulge }}=0.15$,

$$
\theta_{m}=0.557 \pi\left(1.1^{m}-3.138\right)
$$

Overall appearance of the galaxy (double-disc \& ring + bulge + bar-bulge)

(c) Barred ring \& double-disc galaxy

Published paper:

S. Nagao, Formation of Major Types of Galaxies Based on the Energy Circulation Theory, Rep. Adv. Phys. Sci. 6 (2022) 2250004.
https://doi.org/10.1142/S2424942422500049

Website:
Energy Circulation Theory (ECT) home

MiTiempo: Natures of the Time and the Universe

